Intelligent Soft-robotics Lab

Principal Investigator – Doyeon Bang

Principal Investigator

Doyeon Bang

Associate Professor,

Department of Artificial Intelligence Convergence, Graduate School of Data Science, Robotics Engineering Major and Robot Research Initiative Chonnam National University, Gwangju, Korea E-mail: db@jnu.ac.kr

Education

2002~2007	B.S., Chemical Engineering,
2002~2007	B.S., Physics,
2007~2012	Ph.D., Nanomedical Science,

Research Experiences

2012~2014Post-Doctoral Researcher,2014~2018Post-Doctoral Researcher,2019~2021Senior Researcher,

Yonsei University, Seoul Korea Yonsei University, Seoul Korea Yonsei University, Seoul Korea

Yonsei University, Seoul Korea University of California, Berkeley USA Korea Institute of Medical Microrobotics

Research interests

- Developing micro-scale soft robots for healthcare application
- Developing stimuli-responsive soft materials for micro-/macro-scale 3D/4D printing
- Developing unconventional meta-structure, Origami and Kirigami for next-generation soft-robotics

Prof. Doyeon Bang

Dr. Taeksu Lee (Chemical Engineering)

Tongil Park (Mechanical Engineering)

Seunghyun Im (Chemical Engineering)

Hana Choi (Mathematics)

Youngji Ko (Robotics Engineering)

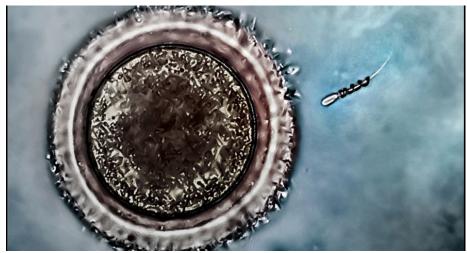
Kyomin Hwang (Data Science)

Saad Shaikh (Mechanical Engineering)

Sridhar Pusparaja (Mechatronics)

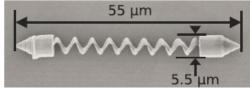
Praveen Madhjiyazhagan (Mechatronics)

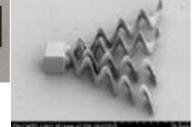



Publications (2020~2023)

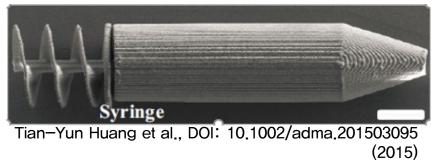
Title	Journal	Impact Factor	Date	Role
Plasmonic Approach to Fluorescence Enhancement of Mesoporous Silica–Coated Gold Nanorods for Highly Sensitive Influenza A Virus Detection Using Lateral Flow Immunosensor	ACS nano	17.1	2023.08.18	
Tunable and Highly Accessible Plasmonic Gap Nanostructures on Flexible Film as a High- Performance Surface-Enhanced Raman Scattering Sensor	Materials Today Nano	10.3	2023.06.22	Corresponding
A Simple Method to Fabricate the Highly Sensitive SERS Substrate by Femtosecond Laser-Based 3D Printer	Chemosensors	4.2	2023.06.08	Corresponding
Wearable Localized Surface Plasmon Resonance–Based Biosensor with Highly Sensitive and Direct Detection of Cortisol in Human Sweat	BIOSENSORS	5.4	2023.01.24	Corresponding
Multifunctional microrobot with real-time visualization and magnetic resonance imaging for chemoembolization therapy of liver cancer	SCIENCE ADVANCES	13.6	2022.11.18	
Microrobot with Gyroid Surface and Gold Nanostar for High Drug Loading and Near-Infrared- Triggered Chemo-Photothermal Therapy	PHARMACEUTICS	5.4	2022.11.06	
Bending-Insensitive Flexible SERS Sensor for Stable and Sensitive Detection on Curved Surfaces	ADVANCED MATERIALS TECHNOLOGIES	6.8	2022.09.01	Corresponding
Magnetically controlled reversible shape-morphing microrobots with real-time X-ray imaging for stomach cancer applications	JOURNAL OF MATERIALS CHEMISTRY B	7.0	2022.06.01	
Biomimetic Nano–Pine–Pollen Structure–Based Surface–Enhanced Raman Spectroscopy Sensing Platform for the Hypersensitive Detection of Toxicants: Cadmium and Amyloid	ACS SUSTAINABLE CHEMISTRY AND ENGINEERING	8.4	2022.02.25	Corresponding
Programmed Shape-Morphing Material Using Single-Layer 4D Printing System	MICROMACHINES	3.4	2022.01.31	Corresponding
Single-layer 4D printing system using focused light: a tool for untethered microrobot applications	CHEMISTRY OF MATERIALS	8.6	2021.09.29	Corresponding
Bio-inspired Ag nanovilli-based sandwich-type SERS aptasensor for ultrasensitive and selective detection of 25-hydroxy vitamin D3	BIOSENSORS AND BIOELECTRONICS	12.6	2021.09.15	
Modular Capsules with Assembly and Separation Mechanism: Proof of Concept	ACTUATORS	2.6	2021.07.12	
Optimization of field-free point position, gradient field and ferromagnetic polymer ratio … controlled polymer-based microrobots in blood vessel	MICROMACHINES	3.4	2021.04.13	
A Magnetically Guided Self-Rolled Microrobot for Targeted Drug Delivery, Real-Time X-Ray Imaging, and Microrobot Retrieval	ADVANCED HEALTHCARE MATERIALS	10	2021.03.01	Corresponding
Self-folded microrobot for active drug delivery and rapid ultrasound-triggered drug release	Sensors and Actuators B: Chemical	8.4	2020.12.01	Corresponding
High-performance biocompatible nanobiocomposite artificial muscles based on ammonia- functionalized graphene nanoplatelets-cellulose acetate combined with PVDF	Sensors and Actuators B: Chemical	8.4	2020.11.15	
Bioinspired Micro Glue Threads Fabricated by Liquid Bridge-to-Solidification as an Effective Sensing Platform	ACS SENSORS	8.9	2020.06.23	
Magnetically actuated miniature walking soft robot based on chainedmagnetic microparticles- embedded elastomer	Sensors and Actuators A: Physical	7.4	2020.01.01	Corresponding

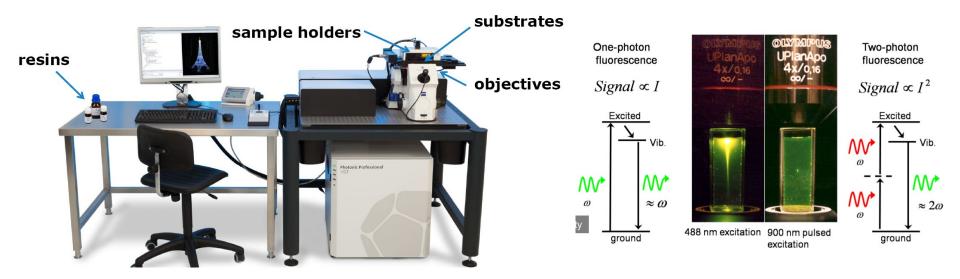
Research topic of our lab \rightarrow Microscale soft robots examples





Nano Lett. 16, 555-561 (2016)


Figure 4: Hydrogel ABF in SEM top view; Scale bar: 10 µm C. Peters et al., DOI: 10.1109/ TRANSDUCERS.2015.7181035, (2015)

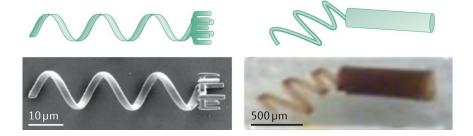

Antoine Barbot et al., DOI: 10.1038/srep19041 (2016)

N. Beyrand et al., 2015 IEEE/RSJ IROS conference

How to make microrobots? \rightarrow Microscale 3D printing

Micro-scale 3D printing system (Nanoscribe Photonic Professional GT)

- Femto-second NIR layer → Two-photon lithography
- Through objective lens \rightarrow Focusing laser in tiny spot (\sim 200 nm)
- Price \sim \$ 350,000 (cf. Honda Civic \sim \$ 20k)
- Minimum feature size: ~200nm


Micro 3DP has same chemistry with SLA, but has different physics

- Laser focusing using objective lens
- Two photon excitation using fs laser

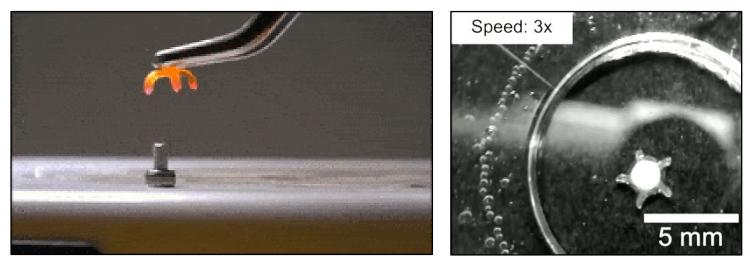
Limitation: is a robot can be static?

However, 3D printed microscale soft robots are static!

Definition of robot

A machine that resembles a living creature in being capable of moving independently and performing complex actions (such as grasping and moving objects) by Webster dictionary

Various complicated jobs, which exceed our imagination can be realized if real microscale soft robot is developed

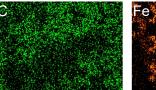


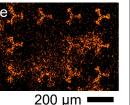
4D printing technology definition / meaning

However, making complicated actively moving parts in micro/nanoscale is challenging

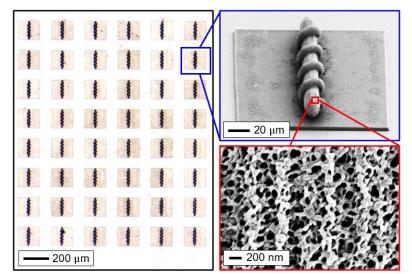
Candidate solution

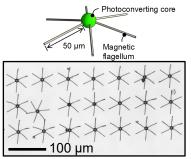
- Complicated structure \rightarrow micro 3D printing (2PP + Obj. Lens)
- Actively moving part \rightarrow 4D printing (Traditional FDM, SLA or DLP)
- Future technology: microscale 4D printing (my ongoing research topic)

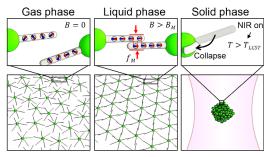

4D printing example: Temperature responsive (left) and polarity responsive (right) materials



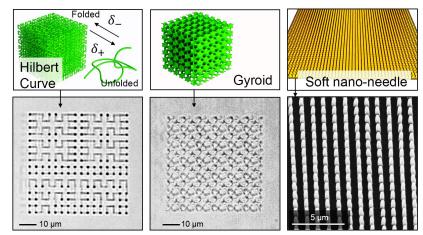
Microscale 3D/4D printing research in our lab


- Microscale 3D/4D printing of functional materials
 - Pure materials: PEG, PNIPAAm, PANI, PCL
 - Metal/ceramic printing in polymer (e.g. Fe₃O₄)

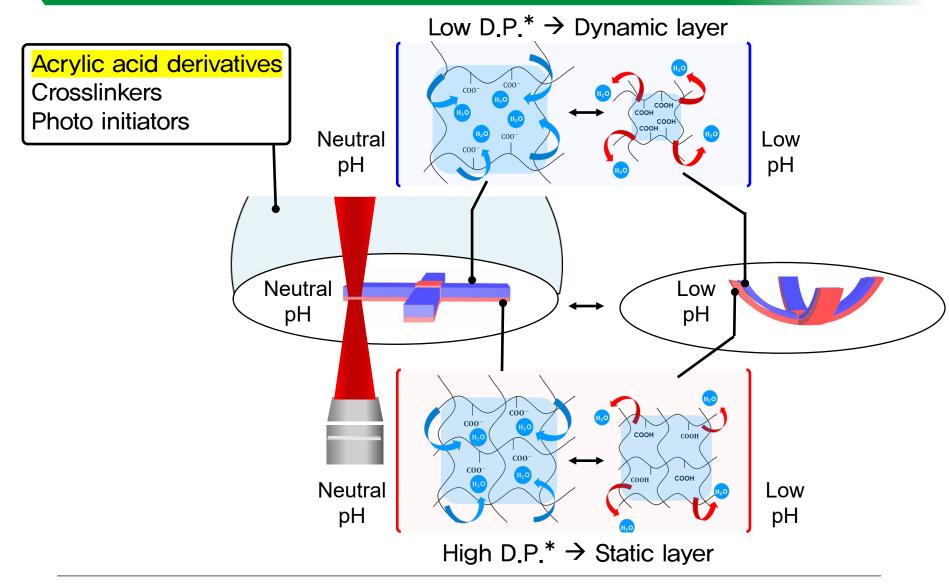




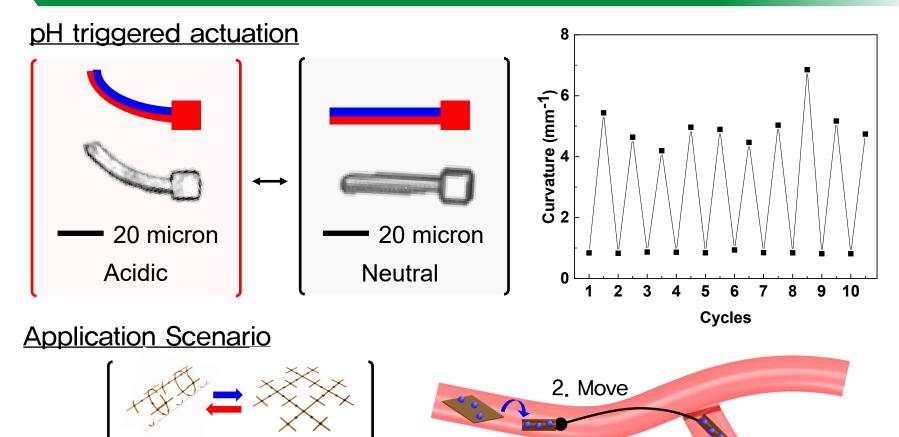
- Nanoporous material



Parametric design of <u>3D Microstructures</u>

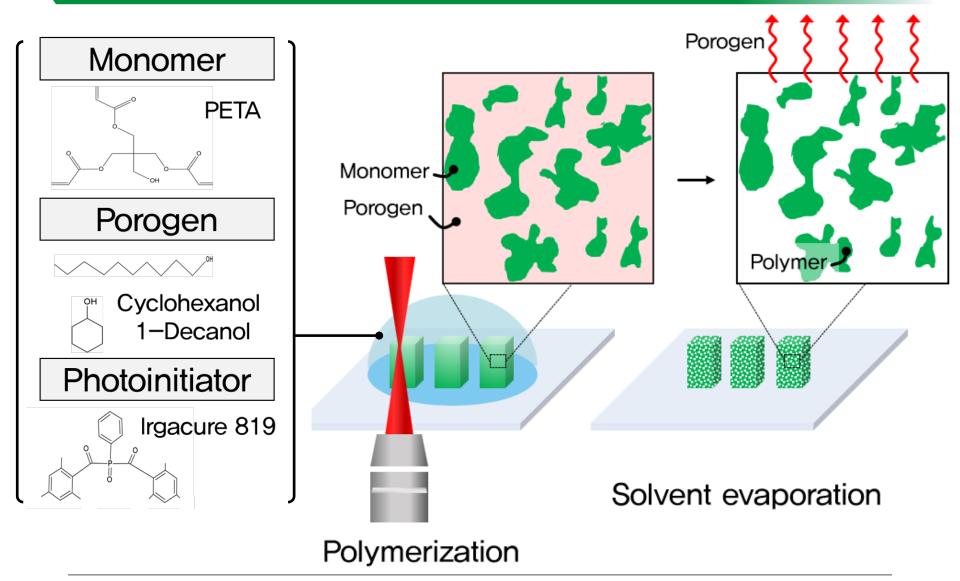

- Hexaflagellar microrobot: use collective motion of the swarm
- Phase changing and application of each phases

- Hilbert structure: shape changing cube ↔ line
- Gyroid: surface loading / delivery
- Nano needle: cell attach, penetration ...


µ3D printing of pH-triggered shape morphing material

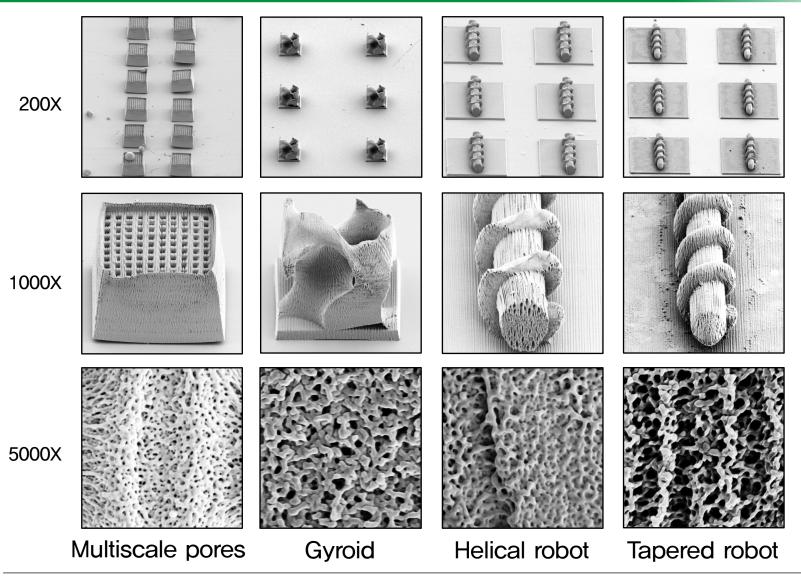
*Degree of Polymerization

µ3D printing of pH-triggered shape morphing material


Release

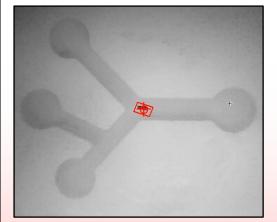
Capture

1. Capture


3. Release

Micro 3D printing with nanoporous structure

Micro 3D printing with nanoporous structure



Future research direction

Conventional Medical Technology

- Limitation in active delivery of drugs/cells to the target area

- Limitation in approach to the target area through capillaries

Microscale Soft Robots for Medical Application with Al

- Actively move in human body & targeting
- Intelligent functions (Sensing, Delivery or new functionality)
- Automated system (with AI imaging)
 - → Remote healthcare w/o trained medical doctor
 - → Everyone gets benefits (Healthcare Democratization)

To achieve goal,

Aim 1. Synthesis <u>Functional Soft–Materials</u> for microscale 3D/4D Printing Aim 2. Parametric design of <u>3D Microstructures</u> to overcome size limitations

